
Towards Robot Task Planning From Probabilistic Models of Human Skills

Chris Paxton, Marin Kobilarov, and Gregory D. Hager
Johns Hopkins University
3400 North Charles Street

Baltimore, MD

Abstract—
We describe an algorithm for motion planning based
on expert demonstrations of a skill. In order to teach
robots to perform complex object manipulation tasks
that can generalize robustly to new environments,
we must (1) learn a representation of the effects
of a task and (2) find an optimal trajectory that
will reproduce these effects in a new environment.
We represent robot skills in terms of a probability
distribution over features learned from multiple ex-
pert demonstrations. When utilizing a skill in a new
environment, we compute feature expectations over
trajectory samples in order to stochastically optimize
the likelihood of a trajectory in the new environment.
The purpose of this method is to enable execution
of complex tasks based on a library of probabilistic
skill models. Motions can be combined to accomplish
complex tasks in hybrid domains. Our approach is
validated in a variety of case studies, including an
Android game, simulated assembly task, and real
robot experiment with a UR5.

I. INTRODUCTION

Many interesting robotic tasks involve multiple steps
and substantial environmental variability. Further, in a con-
strained environment, many steps are shared across tasks.
Consider the example task of assembling a structure out
of different magnetic pieces, a simple version of which is
shown in Fig. 1(left). The robot must be equipped with
skills to successfully approach each of the pieces, close the
gripper around each of the different pieces, latch pieces
together, release and disengage from the pieces without
causing damage to the structure.

We argue that successfully reproducing a task relies on (a)
breaking tasks into re-usable, semantically meaningful skills,
(b) learning representations of each of these skills, and (c)
assembling and executing these skills in new environments.
In this paper we focus on assembling and executing robot
skills based on a probabilistic representation of those skills
learned from demonstrations by an expert user. Our primary
goal is the development of a strategy for motion planning
individual skills based on expert demonstrations, in order to
enable development of a task-level planning algorithm using
these skills. These skills must represent tasks with complex
dynamics and discrete state changes, such as grasping and
manipulating objects.

The problem of learning a model of a task based on such
a user demonstration is referred to as imitation learning.
While reinforcement learning methods have been developed

Fig. 1: Simulated WAM arm performing an APPROACH
action using the proposed method (left), and UR5 lifting a
sander as a part of a learned task (right).

Fig. 2: An example of a complex Needle Master level,
showing different types of goals and obstacles imposing
different constraints on the motion of the needle.

that allow us to adapt goal-directed robot skills to new
environments [1], [2], [3], [4], we focus on more general skill
learning to adapt to new environments with a more abstract
representation of goals. Our approach uses a set of user
demonstrations to learn a set of soft constraints on actions,
and finds a path between different high-level goals while
adhering to these constraints and minimizing collisions.

A standard approach to formulate a task is as a sequence of
low-level actions, each associated with predicates, precondi-
tions, and effects. A task T is defined as a sequence of actions
Ai according to T = {Ai}NT

i=0 where each action is defined
in terms of its specific preconditions and effects. To execute
action Ai, the effects of A1, . . . , Ai−1 must have resulted

in the preconditions of that action. Symbolic planners allow
us to reason about how to complete complex tasks. These
planners have been combined with motion planning to allow
robots to solve tasks that were previously impossible, as
in [5]. However, engineering a system that allows a robot to
use this sort of high-level knowledge is very challenging, and
inevitably will require placing specialized domain knowledge
that must be constantly updated.

Instead, it would be advantageous to ground the definition
of each possible state based on user demonstrations. Any
such grounding should allow robust motion planning in
novel environments to accomplish low-level actions. Some
previous work has attempted to solve this problem through
segmentation into lower-level action models [6], [7], [8]
or through learning predicate conditions and effects [9].
However, these approaches do not consider the difficulties
inherent in reproducing tasks in complex novel environments.

We propose an approach aimed at overcoming these issues
by combining a probabilistic representation of a skill learned
from expert demonstrations with motion planning. Repro-
ducing such skills in a new environment can be regarded as
producing the same intended effects (represented by feature
observations). However, it is difficult to determine what these
intended effects are from observation. We use a probabilistic
model to capture the relationships between the robot and
the environment that is expected to occur during an expert
performance of a task, wherein each skill is represented as
a probability distribution over expected features that capture
the intended effects of that skill. These may be changes in the
relationships between objects in the environment or between
the robot and its environment, for example.

The contributions of this paper can be summarized as: (1)
derivation of an algorithm for motion planning using proba-
bilistic models of expert skills, (2) preliminary approach for
combining these learned skills for executing complex tasks,
and (3) experimental validation of this algorithm in a number
of case studies, including the robotic tasks shown in Fig. 1
and an Android game shown in Fig. 2.

II. BACKGROUND

We seek to enable combined task- and motion-planning for
complex, multi-stage tasks based on learned representations
of those tasks. Prior work exists in describing the relation-
ship between high- and low-level actions and in learning
representations of actions from demonstration, but does not
combine learning with low-level motion planning.

Krüger et al. provide a formal description of object-action
complexes [10], which describe behaviors in relation both
to objects and their intended effects. However, there still
exists much work to do when it comes to coming up with
task plans involving a sequence of movements. These object-
action complexes can be associated with learned low-level
actions, and segmented based on predicates [11]. We likewise
use predicates to provide the segmentation used to learn our
models of low-level skills, but we do not use them during
execution.

Gaussian Mixture Regression was first used in [12] to
recover expected end effector and joint positions plus object
distances over time, and then compute a path based on this
information.

Dynamic Movement Primitives (DMPs) are another imi-
tation learning method that has proven useful for modeling
low-level actions. DMPs model motions as a set of dynam-
ical systems [13]. Pastor et al. used reinforcement learning
with DMPs and multiple human demonstrations to learn a
model of expected features when executing two robotic tasks
in [2]: shooting pool and flipping over a box with a pair
of chopsticks. Kormushev et al. used a modified version of
DMPs together with reinforcement learning to adapt to new
environments with a known goal [14].

Otherwise, DMPs are often adapted to new environments
through reinforcement learning approaches such as Path
Integral Policy Improvement, first proposed in [1]. This
method has been applied to motion planning with DMPs [2].
Work by Kober et al. uses reinforcement to adapt to new
situations by adapting latent variables [3]. These methods
for reinforcement learning were further expanded upon by
Stulp et al., who proposed Path Integral Policy Improvement
with Covariance Matrix Adaptation [4]. These techniques are
also closely related to the Cross-Entropy Method for motion
planning [15]. One of the major differences between the
aforementioned reinforcement learning techniques and the
algorithm proposed in this paper is that we do not know
the correct goal state for our system, and our method is
specifically derived for a probabilistc setting. Our algorithm
finds both an approximately optimal goal state and a plan
for arriving at this state, expanding on the motion planning
approach in [15].

In [6], [7], [8] low-level action models were learned
concurrently with a task model. Grollman et al. [6] learn
a finite state machine task model as an infinite mixture of
Gaussian experts,which is then applied to a robot soccer
task. In [7] the authors performed a similar task, using
an HDP-HMM to prevent perceptual aliasing by modeling
time dependencies between actions. Niekum et al. [8] used
Beta Process Autoregressor Hidden Markov Models (BP-
AR-HMMs) to learn tasks given unstructured expert demon-
strations for a number of object manipulation tasks. After
segmenting using the BP-AR-HMM, they learned DMPs
representing different action primitives. In this paper, we do
not use such an approach to automatically segment our data,
instead using predicates as in [11]. However, these papers do
not perform any motion planning, which limits their ability
to adapt to new environments.

In [9] the authors learn pull and push actions and associate
them with changes in the state of the world in the form of
PDDL predicates. Wächter et al. reproduce a sequence of ac-
tions from a human demonstration by mapping observations
onto a library of Object-Action Complexes associated with
preconditions and effects [11].

III. ALGORITHM

Each action A in a given task is encoded as a probability
distribution over a set of features that will be produced during
a successful instantiation of a skill in a new environment.
The features are denoted by x ∈ Rn and defined using the
function φ through relationship

x = φ(t, s, u),

where t ∈ [t0, tf] denotes time, s ∈ Rd is the robot state, and
u ∈ Rm are the applied control inputs. The model associated
to each action A is denoted by pD(x|A) and is computed
using unsupervised learning from expert demonstrations, typ-
ically assuming a parametric density pD. A joint model of a
task T consisting of multiple actions can be constructed using
a density pD(x|T) ∝ pD(x|A0) · · · pD(x|AnT

) assuming
conditional independence between actions.

We then formulate the generalization of such a learned
skill to a new environment as an optimization problem.
This is accomplished by parameterizing trajectories using
a parameter ξ ∈ Z , where Z represents the space of all
possible parameters resulting into valid trajectories. Since
robot perception and motion are uncertain, each parameter
induces a density p(τ |ξ) where

τ = {t0, s0, u0, t1, s1, u1, . . . , tN , sN , uN}

denotes the system trajectory. For instance, ξ would typically
define a reference trajectory and an associated tracking
control law resulting in the density

p(τ |ξ) = p(s0)

N−1∏
i=0

p(si+1|si, ui)p(ui|si, ξ).

In practice, given ξ the trajectory τ will either be sampled
using a high-fidelity simulator or generated by the real robot.

The aim of employing an optimization-based approach
is to produce a feasible trajectory which optimally ap-
proximates the effects of an expert’s action, represented as
a set of features capturing object-actor and object-object
relationships in the workspace. Therefore, the optimization
cost is encoded as the likelihood of generating new features
x given the expert-derived probability distribution for the
action, i.e. with respect to the constructed model pD(x|A).

We propose to employ stochastic trajectory optimization
to solve the motion planning problems in constrained en-
vironments [16], [15]. This is accomplished by introducing
an artificial surrogate distribution over V that will induce
a distribution over trajectories τ and over the corresponding
features x along these trajectories. The surrogate will then be
iteratively optimized until it becomes optimally close (in a
distribution sense) to the expert density pD(x) without violat-
ing the constraints of the environment such as obstacles and
joint limits. The surrogate model is built using a parametric
density π(ξ|v) such as a multivariate Gaussian or a GMM
with parameters v.

More specifically, the cost is defined as the Kullback-
Leibler divergence between the probability distribution of
expected features and the average probability of observing

those new features from dynamically feasible robot states. It
is given by:

J(τ) =
1

N

N∑
i=0

DKL(pD(xi)||p(xi|v)),

This is equivalent to minimizing the KL divergence for all
observed states along a trajectory τ . For the ith observation
in a given τ we use the notation:

DKL(pD(xi)||p(xi|v)) ,
∫
pD(xi)

log pD(xi)

log p(xi|v)
dxi, (1)

where p(xi|v) =
∫
I{xi=φ(ti,si,ui)}p(τ |ξ)π(ξ|v)dτdξ is the

probability density of a feature at time ti from the surrogate
model v.

The optimal parameter v∗ can be obtained by noting that

min
v

1

N

N∑
i=0

DKL(pD(xi)||p(xi|v)), (2)

= min
v

1

N

N∑
i=0

∫
−pD(xi) log p(xi|v)dxi, (3)

where xi,j = φ(ti, si,j , ui,j) is a generated feature from
robot state si,j at time ti along the sampled trajectory
τj ∼ p(·|ξj) for ξj ∼ π(·|v0).

We can approximate this solution by drawing M i.i.d.
samples ξ1, . . . , ξM from v0:

≈ min
v

1

N

N∑
i=0

M∑
j=1

−pD(xi,j) log π(ξj |v0), (4)

The necessary conditions for a minimum correspond to
setting the gradient of (4) to zero, i.e. by solving the equality

N∑
i=0

M∑
j=1

−wi,j∇v log π(ξj |v) = 0, (5)

where the weights wi,j are given by wi,j , pD(xi,j)p(xj |ξi).
In practice, we often assume that p(xj |ξi) = 1. This is the
case wherever system dynamics are deterministic.

When π(·|v) = N (·|µ,Σ)|V (i.e. a single multivariate
Gaussian with domain restricted to feasible parameter set
Z), the relationship (5) can be solved in closed form as

µ =

M∑
j=1

w̄jξj , Σ =

M∑
j=1

w̄j(µ− ξj)(µ− ξj)T , (6)

where wj =
∑N
i=0 wi,j and w̄j = wj/

∑M
j=1 wj . When

π(·|v) is a GMM the minimization (4) is performed using a
weighted expectation minimization (EM) algorithm.

In practice, the optimal parameter v is computed iteratively
starting with some nominal choice v0 which approximately
covers the trajectory space of interest. At each iteration we
draw M samples ξj ∼ π(·|v0), j ∈ 1, . . . ,M and compute
the next v by minimizing (4). At the next iteration v0 is set
to v and the process continues until the cost converges.

1) Executing a Task: When attempting to complete a
complex task, however, the approach outlined above is not
sufficient. Optimizing individual actions may leave the robot
in a situation where it cannot perform a necessary next step
correctly.

One approach is to employ a joint model pD(x|T) over the
whole task in place of pD(x|A). In such case it is expected
that the parameter ξ must encode a more complex trajectory
which for instance could have discrete or binary variables
corresponding to switching states (such as “close-gripper” or
“open-gripper”). However, as the dimension and complexity
of V grows, solving the optimal control problem becomes
intractable.

Instead, we employ a simpler approach which still op-
timizes a trajectory τ over a single action AK with the
exception that it also ensures smooth transition to the next
action Ak+1. This is achieved by maximizing the likelihood
of the final feature xN under action Ak+1. To this end we
employ pD(xi|Ak)pD(xN |Ak+1) in place of pD(xi|A) in (4)
leading to the new weights

wij , pD(xi,j |Ak)pD(xN,j |Ak+1), (7)

where pD(x|Ai) is the expert density of action Ai.
2) Avoiding Obstacles and Joint Limits: The cross-

entropy method provides a straightforward way of dealing
with obstacles and joint limits that may prevent us from
reproducing a task in a new environment. Rather than using
potential fields for object avoidance as per [17], we constrain
Z to consist only of the space of valid trajectories. This
means that when drawing our M samples, we remove
samples currently in collision or past joint limits in our new
environment and continue to draw sample trajectories until
we have all M valid examples. This allows us to accomplish
both motion planning and skill imitation through the same
framework. This works effectively in practice as long as the
task does not require generalization in environments with
very narrow passages that the system has never been trained
on. Such cases are extremely difficult since the probability
of obtaining samples in the narrow passage is close to zero,
unless an informative nominal density parameter v0 is used
with enough probability mass over such regions.

3) Controlling Step Size: In order to ensure we arrive at an
optimal solution, we want to control the size of the steps we
take during trajectory optimization. To this end we introduce
an extra parameter 0 < α < 1, which controls the size of
steps taken at each iteration. Given Σ∗i as the optimal Σ at
iteration i, we compute µi+1 and Σi+1 as:

µi+1 = (1− α)µi − αµ∗i
Σi+1 = (1− α)Σi − αΣ∗i

(8)

Since Σ determines our search region, introducing this
step size term lets us prevent our search from converging
prematurely. In practice we found setting this value to
0.50− 0.75 gave us the best results.

4) States with Low Covariance: Our method should allow
us to capture states that occupy a very narrow region of the
possible feature space, meaning that a multivariate Gaussian
or mixture of multivariate Gaussians representing this skill
will have an extremely small covariance matrix. To reduce
this issue, we add a term to the diagonal entries in Σ at each
iteration. This fixed quantity is reduced at every iteration.
This simple strategy greatly increases the range of possible
skills we can learn.

IV. EXPERIMENTS

We performed three experiments in different experimental
domains representing a wide variety of tasks and potential
applications of our method. These tasks will be segmented
into different actions via user-defined predicates, and the
objects used in the predicates associated with each action
will be used as parameters. In the future, segmentation and
feature selection might be performed automatically.

We developed an Android game to explore how user
actions relate to different features of the environment and
to allow us to test different approaches for modeling action
primitives. This game, called “Needle Master”, is inspired
by the suturing task common in robotic minimally invasive
surgery. It is available for Android smart phones and tablets,
and can be downloaded for free from the Google Play Store1.

In the Needle Master case study described in Section IV-
A, our objects are all gates. These are 2D poses defined
by (x, y, θ) and having a height and a width. Similarly, the
simulated and real robot experiments use object poses to
compute features. In effect, these features are capturing soft
constraints on the positions the needle or end effector can
take based on the positions of objects that are important to
the task.

In Section IV-B, we examine several robotic tasks, both
in simulation and in the real world. The different tasks we
describe in this section show that our method can encode a
broad range of robotic skills.

A. Case Study: Needle Master

We initially explored our method in simulation environ-
ments with “perfect” sensing capabilities.

In Needle Master, users need to steer a 2D needle through
a number of target gates positioned in patient tissue, as shown
in Fig. 2. These gates represent needle insertion points in a
suturing task. We aim to learn the way users respond to
variations in the features of the environment, particularly in
the position and orientation of these gates. Maintaining the
correct orientation of the needle relative to gates and tissue
is very important, as is making a path that does not go into
high-risk “tissue” regions.

Users can rotate the needle and control its velocity. The
rules of the game are:

• The needle must exit off of the right side of the screen.

1https://play.google.com/store/apps/details?id=
edu.jhu.lcsr.needlemaster

• The needle must pass through gates in order. Hitting the
top or bottom of the gate will “break” that gate, causing
the user to score less points for passing through it.

• The needle must not hit dark red “deep tissue”, repre-
senting vital organs.

• The needle must not cause too much damage to pink
“tissue”. Players can damage this tissue if they rotate
the needle too much.

In effect, the users’ goal is to come up with a motion
plan that pass through as many gates as possible without
breaking them, while avoiding red obstacles and constraining
needle rotation in pink obstacles. Fig. 2 shows a complex
environment users must respond to late in the Needle Master
game, and Fig. 3 shows a wider range of the levels used to
collect training data.

1) Task Representation: Our goal is to reproduce user
skills in a way that closely approximates the human per-
formances of these skills, but applies them to complex novel
environments. The Needle Master task is to move from left
to right, hitting gates in a specific order while attempting
to avoid the dark red areas on the top and bottom of the
gate if possible. The needle in this game has a state defined
s = [x, y, θ]T, where x and y denote the position of the
needle and θ represents its orientation. It is associated with
an action u = [u, v]. The dynamics of the needle are given
by: xi+1

yi+1

θi+1

 =

x + v cos(θ)
y + v sin(θ)

θ + u

 (9)

We can represent a trajectory produced by these dynamics
as a series of curves with constant rotation u, constant
velocity v, and duration t, similar to that described in [15].

We segment task demonstrations based on a set of pred-
icates. These predicates describe the relationship of the
needle to its environment, as a proxy for what the expert
demonstrating the trajectory is responding to. Predicates used
in these examples are:
• NEEDLE-IN-GATE: true if the needle is within a gate
• HAS-PREV-GATE: true if we are leaving one gate and

still have gates to visit
• GATE-CLOSED: true if a gate has been closed
• GATE-OPEN: true if a gate is open still
• AT-EXIT: true if the needle has moved off the screen

to the right, thus ending the level
These predicates divide user demonstrations into five

different states, parameterized by different entities in the
environment: (1) approaching the first gate, (2) passing
through a gate, (3) connecting two gates, (4) moving to
the exit, and (5) at the exit and done with a level. There
are features associated with each entity in the environment.
Different actions use whichever features are appropriate: the
action for connecting two gates uses the features associated
with both gates, for example, while passing through a gate
is based on the features associated with that gate alone.

Each gate is defined by its position, height, width, and
its orientation. Top and bottom bars are a constant fraction

Gates En-
tered

Gates
Cleared

Gates
Broken

Levels Fin-
ished

Naive 4 0 4 10
No Goals 9 2 7 5
Full 20 16 4 10

TABLE I: Comparison of performance on the Needle Master
task with different methods implemented.

of the gate’s height. The features for each gate project the
needle’s current position into the gate’s frame of reference,
and compare the distance between the angle of the needle
and the angle of the gate:

φgate(s) =

cos (atan2 (y, x) + θgate)− xgate

sin (atan2 (y, x) + θgate)− ygate√
(x− xgate)2 + (y− ygate)2

|θgate − θ|

 (10)

We use the y distance to the edge of the level as a feature
for skills learned after the GATE-CLOSED predicate is true
for all gates, and we use the magnitude of the rotation control
|u| as a feature for all actions. Finally, we use the change
in the above variables as an additional set of features. In
addition, we describe whether or not the needle is in tissue
with a boolean variable.

We used GMMs with k = 3 components to model skills
and fit them through the Expectation-Maximization algo-
rithm. These were learned from three expert demonstrations
from each of the first twelve levels of the game. Our approach
allows us to complete very complex Needle Master levels
including those with obstacles and changing constraints due
to presence of tissue, as shown in Fig. 3(top).

2) Comparison To Other Methods: To validate our ap-
proach, we showed how our algorithm could generate tra-
jectories for 10 different randomly generated levels with
multiple gates and obstacles. We compare these results to two
other approaches: (1) a naive version of the algorithm without
performing planning, and (2) a version of the algorithm that
does include the goal term discussed in Eq. (7).

All three versions of the algorithm rely on the same
GMM learned from user data. In the “Naive” version of the
algorithm, at each time step we take the action corresponding
to the highest probability by searching for the optimal (u,v)
given the current features x.

We compare four different metrics: (1) how many gates
were ever entered by the needle, (2) of those, how many
gates were “cleared” successfully, (3) how many gates were
“broken” by the needle either touching the top and bottom
bars, and (4) how many levels were successfully finished
(final position off the screen to the right). In one set of
experiments (top), we generated 10 levels with two gates
and two obstacles. In the second (bottom) set, we generated
10 levels with two gates and no obstacles.

Table I shows the results of these experiments. The naive
approach performed very poorly, usually because it has
trouble aligning with the gates. When gates are in unexpected
positions, it choses high-probability movements that end up
moving it away from the correct path. It finished every level,

Fig. 3: Comparison showing our method on Needle Master levels 4− 8 (top) vs. a version of the model without goal term
introduced in Eq. (7) (bottom). Colors indicate which learned skill was active at each point in the trajectory: approaching a
gate is purple, passing through a gate is green, connecting two gates is blue, and moving to the exit is red.

though, since it chooses the most likely motion and in all
examples we move from left to right. The approach without
a goal term similarly performs poorly: the behavior of each
component action is not well defined at the beginning and
end.

B. Case Study: Robotic Tasks

Our algorithm is demonstrated in an object manipulation
task where we need to build a structure of increasing
complexity out of magnetic blocks, as per the task described
in [18]. This simulated assembly task consists of a number
of skills which need to be executed in the same order to
connect two pieces together. In the structure assembly task,
we are learning the actions:
• APPROACH(link): move to a “link” object
• GRASP(link): close the gripper and secure the link

object.
• ALIGN(link,node): holding the link, move so that

it is above the node.
• PLACE(link, node): place the link on top of the

node.
• RELEASE(link): open the gripper
• DISENGAGE(link): move away from the link with-

out knocking it over
These skills must be chained together in a specific order,

and each skill is critical to the completion of the next skill.
Figure 4 shows the procedure as executed by our algorithm.
We also consider the task of grasping and lifting a sander
above a vise in an industrial robot “workshop assistant” task.

When teaching the APPROACH and GRASP skills, we are
teaching one particular grasp, associated with a range of
valid positions. Note that the link object has eight-way
rotational symmetry: we can flip it over or rotate in 90 degree
increments and end up with a valid grasp. We can also mirror
our grasp, putting two fingers on either side of the object. The
same is true of the ALIGN and PLACE actions for connecting
the link and the node: there are four possible mates for each
of the cube’s six surfaces. We are teaching one specific mate
and grasp in this example, but we could use these symmetries

Fig. 5: Four trajectories showing user demonstrations used
to train the APPROACH skill for the simulated Barrett WAM
arm task. Note that these trajectories capture a very wide
range of possible approaches, being of different lengths and
in different regions.

to apply our grasp and mate to any of the applicable surfaces
on our two objects.

To create a model of each of these skills, we collect four
demonstrations of the object manipulation action starting
from the same grasp, with two of the Barrett Hand’s fingers
on the left side of the link and one on the right. The simulated
WAM arm was teleoperated: users controlled the end effector
frame of the robot, and joint torques were computed by a
Jacobian Transpose Null Space controller. As a result training
data was very noisy, as we might expect from similar non-
expert instruction of a real robot. Fig. 5 shows the trajectories
used to train one of these skill models, that of the APPROACH
action. Trajectories are shown in red, relative to the link
object that parameterizes the skill.

1) Task Representation: We use four sets of features:
(1) the time in a particular state, (2) the gripper command
variables, (3) the transforms between the end frame and the
objects. We used the x,y, and z offsets from this transform,
the distance (norm of the position), and the quaternion
representation of the rotation as features in the transform.

The feature function φ(s) computes the forward kinemat-
ics of the robot arm: our variables are the relative end effector

1 2

5

3

6 7

4

Fig. 4: Sequence of actions necessary to perform the structure assembly task. Starting in the upper left: initial
state, APPROACH(link), GRASP(link), ALIGN(link,node), PLACE(link,node), RELEASE(link), and
DISENGAGE(link).

position in comparison to objects in the environment and the
norm of the position. For our experiments, we selected the
relevant objects in each demonstration for which we compute
the features. For the APPROACH, GRASP, RELEASE, and
DISENGAGE actions, these are computed based on the
link object alone. For the ALIGN and PLACE actions, we
compute parameters based on the node object.

We represent a robot trajectory as a set of end-effector
poses to attain. In the WAM arm simulation, we use
three such poses, and interpolate between them to cre-
ate trajectories. Each individual primitive consists of an
(x, y, z, roll, pitch, yaw) offset from the current end effec-
tor location. We interpolate between these points to create a
trajectory.

C. Results

We collected three demonstrations of each of the different
skills with a dynamic simulation of the Barrett WAM arm.
We then place these pieces in different positions in the en-
vironment, and validated our method by performing the task
in different locations. The results of one performance in a
novel environment are shown in Fig. 4. We also successfully
demonstrated the task on a simple tool-use example, grabbing
and lifting a sander after being given a human demonstration
of the same. A performance of this task with a new world
configuration is shown in Fig. 8.

In particular, we find that as in the Needle Master example
discussed above, it is very important to have good models of
the next skill in order to complete each previous skill: motion
in the PLACE and APPROACH actions are often very noisy,
but successful grasps mates (as exemplified by the GRASP
and RELEASE skills) are much more restrictive.

Skills such as APPROACH and ALIGN represent vaguely
defined actions, as well. In addition, the training data used
to create these skills are extremely noisy due to the wide
variety of different approach directions and distances from
which a user can move. One advantage of our approach is
that these actions become better defined when combined with

Fig. 6: Plot showing improvement of mean KL divergence
over 30 iterations of the algorithm with α = 0.75.

Fig. 7: Plot showing distance between the end frame and
relevant objects for learned skills. For APPROACH and
DISENGAGE, this object is the link. For ALIGN and PLACE
this is the node.

a following action, like the GRASP or PLACE.
Fig. 6 shows how our approach iteratively decreases

the KL divergence between the features produced by the
current trajectory distribution parameterized by vi and the
expert probability distribution. Each line indicates the av-
erage KL divergence during iteration for one action (either
APPROACH, ALIGN, PLACE, or DISENGAGE) and its goal.
The distribution for the action ALIGN with the goal of
PLACE is far less constrained, since there are many ways
of approaching the region above the node before a mate.

Fig. 8: Workshop assistant experiments. Top: the first portion
of a sanding task, wherein the robot grabs a sander and lifts
it up over the vise. Bottom: a grasp action, moving to pick
a wooden block from a vise.

Fig. 7 explores how the distance between various objects
changes over the course of these trajectories. We can see
that during the ALIGN action, distance does not change
very much, partly because much of the action is lifting the
link up so that it can be mated to the top. Contrast this
with the APPROACH action, where the end effector quickly
approaches the link and shifts into a high-quality position to
transition to GRASP.

V. CONCLUSIONS

We described a practical approach for motion planning
based on a probabilistic model of a skill. One of the
goals of this approach is to enable task-level planning: by
representing skills as probability distributions, we create a
framework that allows us to describe and combine a broad
range of cost functions. We validated this approach with a
series of experiments in different application domains.

Future work will integrate this approach with higher-
level task planning. In addition, we will examine automat-
ically segmenting demonstrations of tasks into sub-skills
and identifying useful invariant features. In particular, we
could use Bayesian non-parametric methods such as those
discussed in [6], [7], [8] in order to automatically determine
skills and transitions between skills from user data. This
would eliminate the requirement that the algorithm must be
provided with labeled training data.

REFERENCES

[1] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: A path integral approach,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 2397–2403.

[2] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 3828–3834.

[3] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to ad-
just robot movements to new situations,” in IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol. 22, no. 3,
2011, p. 2650.

[4] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” arXiv preprint arXiv:1206.4621, 2012.

[5] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic ac-
tion planning with geometric and differential constraints,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 5002–5008.

[6] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration.” in Intelligent Robots and Systems
(IROS 2010), 2010 IEEE/RSJ International Conference on, 2010, pp.
261–266.

[7] J. Butterfield, S. Osentoski, G. Jay, and O. C. Jenkins, “Learning
from demonstration using a multi-valued function regressor for time-
series data,” in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS
International Conference on. IEEE, 2010, pp. 328–333.

[8] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning and
generalization of complex tasks from unstructured demonstrations,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, 2012, pp. 5239–5246.

[9] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Ko-
rmushev, and D. G. Caldwell, “Learning symbolic representations of
actions from human demonstrations,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
3801–3808.

[10] N. Krüger, J. Piater, F. Wörgötter, C. Geib, R. Petrick, M. Steedman,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, et al., “A formal definition
of object-action complexes and examples at different levels of the
processing hierarchy,” PACO-PLUS Technical Report, available fro m
http://www. paco-plus. org, 2009.

[11] M. Wachter, S. Schulz, T. Asfour, E. Aksoy, F. Worgotter, and R. Dill-
mann, “Action sequence reproduction based on automatic segmenta-
tion and object-action complexes,” in Humanoid Robots (Humanoids),
2013 13th IEEE-RAS International Conference on. IEEE, 2013, pp.
189–195.

[12] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 2,
pp. 286–298, 2007.

[13] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive Motion of
Animals and Machines. Springer, 2006, pp. 261–280.

[14] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 3232–3237.

[15] M. Kobilarov, “Cross-entropy motion planning,” International Journal
of Robotics Research, vol. 31, no. 7, pp. 855–871, 2012.

[16] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization. Springer, 2004.

[17] D. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives
and potential fields,” in 8th IEEE-RAS International Conference on
Humanoid Robots. IEEE, 2008, pp. 91–98.

[18] J. Bohren, C. Papazov, D. Burschka, K. Krieger, S. Parusel, S. Had-
dadin, W. L. Shepherdson, G. D. Hager, and L. L. Whitcomb, “A pilot
study in vision-based augmented telemanipulation for remote assembly
over high-latency networks,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 3631–3638.

